Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation

Identifieur interne : 000793 ( Main/Repository ); précédent : 000792; suivant : 000794

Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation

Auteurs : RBID : Pascal:13-0229278

Descripteurs français

English descriptors

Abstract

Simulations of photovoltaic devices provide a promising tool for the exploration of internal loss mechanisms and assessment of optimization potentials. The knowledge of the internal wave propagation and local photon absorption rate is a fundamental prerequisite for modeling Cu(In,Ga)(Se,S)2 thin film solar cells by means of a sophisticated Technology Computer Aided Design (TCAD) device simulator. In a first step, we applied variable-angle spectroscopic ellipsometry to derive the optical constants of the involved layers, namely the doped and undoped zinc oxide, the In2S3 buffer, the MoSe2 and the molybdenum film. These data enter for a semi-coherent calculation of the wave propagation and of the local generation rate in the thin film stack. Scattering effects due to interface roughness were considered appropriately and the TCAD-simulated photogeneration and reflection spectra were compared with measured quantum efficiencies and reflection spectra, respectively.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0229278

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical characterization and modeling of Cu(In,Ga)(Se,S)
<sub>2</sub>
solar cells with spectroscopic ellipsometry and coherent numerical simulation</title>
<author>
<name sortKey="Richter, M" uniqKey="Richter M">M. Richter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11</s1>
<s2>26129 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl-von-Ossietzky-Strasse 9-11</wicri:noRegion>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>AVANCIS GmbH & Co. KG, Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schubbert, C" uniqKey="Schubbert C">C. Schubbert</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11</s1>
<s2>26129 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl-von-Ossietzky-Strasse 9-11</wicri:noRegion>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>AVANCIS GmbH & Co. KG, Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eraerds, P" uniqKey="Eraerds P">P. Eraerds</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>AVANCIS GmbH & Co. KG, Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Riedel, I" uniqKey="Riedel I">I. Riedel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11</s1>
<s2>26129 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl-von-Ossietzky-Strasse 9-11</wicri:noRegion>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Keller, J" uniqKey="Keller J">J. Keller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11</s1>
<s2>26129 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl-von-Ossietzky-Strasse 9-11</wicri:noRegion>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parisi, J" uniqKey="Parisi J">J. Parisi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11</s1>
<s2>26129 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl-von-Ossietzky-Strasse 9-11</wicri:noRegion>
<wicri:noRegion>26129 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dalibor, T" uniqKey="Dalibor T">T. Dalibor</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>AVANCIS GmbH & Co. KG, Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Avellan Hampe, A" uniqKey="Avellan Hampe A">A. Avellan-Hampe</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>AVANCIS GmbH & Co. KG, Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0229278</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0229278 INIST</idno>
<idno type="RBID">Pascal:13-0229278</idno>
<idno type="wicri:Area/Main/Corpus">000B00</idno>
<idno type="wicri:Area/Main/Repository">000793</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer aided design</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Digital simulation</term>
<term>Doping</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Indium selenides</term>
<term>Indium sulfide</term>
<term>Interface roughness</term>
<term>Modelling</term>
<term>Molybdenum</term>
<term>Molybdenum selenides</term>
<term>Optical constants</term>
<term>Optical properties</term>
<term>Optimization</term>
<term>Photogeneration</term>
<term>Photovoltaic cell</term>
<term>Quantum yield</term>
<term>Reflection spectrum</term>
<term>Solar cells</term>
<term>Spectroscopic ellipsometry</term>
<term>Theoretical study</term>
<term>Thin film devices</term>
<term>Thin films</term>
<term>Wave propagation</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété optique</term>
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Cellule solaire</term>
<term>Ellipsométrie spectroscopique</term>
<term>Simulation numérique</term>
<term>Dispositif photovoltaïque</term>
<term>Optimisation</term>
<term>Propagation onde</term>
<term>Dispositif couche mince</term>
<term>Conception assistée</term>
<term>Constante optique</term>
<term>Dopage</term>
<term>Molybdène</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Oxyde de zinc</term>
<term>Sulfure d'indium</term>
<term>Séléniure de molybdène</term>
<term>Couche mince</term>
<term>Rugosité interface</term>
<term>Photogénération</term>
<term>Spectre réflexion</term>
<term>Rendement quantique</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>In2S3</term>
<term>MoSe2</term>
<term>Mo</term>
<term>7866</term>
<term>8460J</term>
<term>0760F</term>
<term>7820C</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Molybdène</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Simulations of photovoltaic devices provide a promising tool for the exploration of internal loss mechanisms and assessment of optimization potentials. The knowledge of the internal wave propagation and local photon absorption rate is a fundamental prerequisite for modeling Cu(In,Ga)(Se,S)
<sub>2</sub>
thin film solar cells by means of a sophisticated Technology Computer Aided Design (TCAD) device simulator. In a first step, we applied variable-angle spectroscopic ellipsometry to derive the optical constants of the involved layers, namely the doped and undoped zinc oxide, the In
<sub>2</sub>
S
<sub>3</sub>
buffer, the MoSe
<sub>2</sub>
and the molybdenum film. These data enter for a semi-coherent calculation of the wave propagation and of the local generation rate in the thin film stack. Scattering effects due to interface roughness were considered appropriately and the TCAD-simulated photogeneration and reflection spectra were compared with measured quantum efficiencies and reflection spectra, respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>535</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical characterization and modeling of Cu(In,Ga)(Se,S)
<sub>2</sub>
solar cells with spectroscopic ellipsometry and coherent numerical simulation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>E-MRS 2012 Symposium B</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>RICHTER (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHUBBERT (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ERAERDS (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RIEDEL (I.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KELLER (J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PARISI (J.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DALIBOR (T.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>AVELLAN-HAMPE (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>EDOFF (Marika)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ROMEO (Alessandro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SCHEER (Roland)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SHAFARMAN (William)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>KATAGIRI (Hirono)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11</s1>
<s2>26129 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>AVANCIS GmbH & Co. KG, Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society (E-MRS)</s1>
<s2>Strasbourg</s2>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>331-335</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000504170550730</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0229278</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Simulations of photovoltaic devices provide a promising tool for the exploration of internal loss mechanisms and assessment of optimization potentials. The knowledge of the internal wave propagation and local photon absorption rate is a fundamental prerequisite for modeling Cu(In,Ga)(Se,S)
<sub>2</sub>
thin film solar cells by means of a sophisticated Technology Computer Aided Design (TCAD) device simulator. In a first step, we applied variable-angle spectroscopic ellipsometry to derive the optical constants of the involved layers, namely the doped and undoped zinc oxide, the In
<sub>2</sub>
S
<sub>3</sub>
buffer, the MoSe
<sub>2</sub>
and the molybdenum film. These data enter for a semi-coherent calculation of the wave propagation and of the local generation rate in the thin film stack. Scattering effects due to interface roughness were considered appropriately and the TCAD-simulated photogeneration and reflection spectra were compared with measured quantum efficiencies and reflection spectra, respectively.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G60F</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ellipsométrie spectroscopique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Spectroscopic ellipsometry</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Elipsometría espectroscópica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Optimisation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Optimization</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Propagation onde</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Wave propagation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dispositif couche mince</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Thin film devices</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Conception assistée</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Computer aided design</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Constante optique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Optical constants</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Doping</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Doping</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de molybdène</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Molybdenum selenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Rugosité interface</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Interface roughness</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Photogénération</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Photogeneration</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Fotogeneración</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Rendement quantique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Quantum yield</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>34</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>35</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>36</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>In2S3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>MoSe2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Mo</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>0760F</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>7820C</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>210</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>E-MRS Spring Meeting 2012. Symposium B "Thin Film Chalcogenide Photovoltaic Materials"</s1>
<s3>Strasbourg FRA</s3>
<s4>2012-05-14</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000793 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000793 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0229278
   |texte=   Optical characterization and modeling of Cu(In,Ga)(Se,S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024